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Abstract In this paper, we propose a new efficient method based on a combination
of Adomian decomposition method (ADM) and Green’s function for solving second-
order boundary value problems (BVPs) for integro-differential equations (IDEs). The
proposed method depends on constructing Green’s function before establishing the
recursive scheme for the solution components. Unlike the ADM or modified ADM , the
proposed method avoids solving a sequence of difficult nonlinear equations (transcen-
dental equations) for the unknown parameters. The proposed method provides a direct
recursive scheme for obtaining the series solution with easily calculable components.
We also provide a sufficient condition that guarantees a unique solution to the second-
order BVPs for IDEs. Convergence and error analysis of the proposed method are also
discussed. Convergence analysis is reliable enough to estimate the error bound of the
series solution. Some numerical examples are included to demonstrate the accuracy,
applicability, and generality of the proposed approach. The numerical results reveal
that the proposed method is very effective and simple.

Keyword Integro-differential equations · Boundary value problems · Adomian
decomposition method · Green’s function · Approximations

1 Introduction

Fast and accurate numerical solution of boundary value problems (BVPs) for ordinary
differential equations is necessary in many branches of applied mathematics, physics
and chemistry, e.g., heat and mass transfer within porous catalyst particle [1], oxy-
gen diffusion in cells [2], astrophysics, hydrodynamic and hydromagnetics stability,
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boundary layer theory, the study of stellar interiors, control and optimization theory,
and flow networks in biology. In particular, initial and boundary value problems for
integro-differential equations (IDEs) arise in chemical engineering, underground water
flow and population dynamics, and other field of physics and mathematical chemistry,
(for details see, [3–7]). Since it is usually impossible to obtain the closed-form solu-
tions to BVPs of IDEs met in practice, these problems must be solved by various
approximate and numerical methods. For details about the existence and uniqueness
of solutions for such problems, readers are referred to Agarwal [8].

The aim of this article is to propose an efficient method for solving second-order
two-point BVPs for IDEs. The proposed technique is based on a combination of the
ADM and Green’s function. Consider the following class of second-order two-point
BVPs for IDEs as

y′′(x) = g(x)+
x∫

a

K1(x, t) f1(t, y(t))dt +
b∫

a

K2(x, t) f2(t, y(t))dt, x ∈ [a, b],

(1.1)

subject to the boundary conditions:

y(a) = α1, y(b) = β1, (1.2)

where α1 and β1 are any finite real constants, g(x) ∈ C[a, b], and Ki (x, t) ∈
C([a, b] × [a, b]), i = 1, 2. We assume the following conditions on f1(t, y) and
f2(t, y):

(F − 1) f1(t, y), f2(t, y) ∈ C{[a, b] × R};
(F − 2) f1(t, y), f2(t, y) satisfy the Lipschitz condition, i.e, there exists constants L1

and L2 such that

| f1(t, y)− f1(t, z)| ≤ L1|y − z|, | f2(t, y)− f2(t, z)| ≤ L2|y − z|. (1.3)

In recent years, a great deal of numerical methods have been applied to solve the
particular form of (1.1)–(1.2) in [7–21] and many of the references therein. For exam-
ple, compact finite difference [14], monotone iterative methods [7], spline collocation
method [16], the method of upper and lower solution [17] and Haar wavelets [18]
have been studied. Although, these numerical techniques have many advantages, but
a huge amount of computational work is involved that combines some root-finding
techniques to obtain accurate numerical solution especially for nonlinear problems.

Recently, some newly developed numerical-approximate methods have also been
applied to handle some particular cases of the problem (1.1)–(1.2) such as, the Ado-
mian decomposition method (ADM), Laplace ADM (LADM) [12,19], homotopy
analysis method (HAM) [20], homotopy perturbation method (HPM) [11] and the
variational iteration method [21].

It is well-known that the ADM allows us to solve both nonlinear initial value
problems (IVPs) and BVPs without unphysical restrictive assumptions such as lin-
earization, discretization, perturbation and guessing the initial term or a set of basis
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function. In recent years, many authors [12,19,22–32] have shown interest to study
of the ADM for different scientific models. According to the ADM, the problem (1.1)
can be written in an operator form as

Ly(x) = g(x)+ N y(x), x ∈ I, (1.4)

where L = d2

dx2 is a linear second-order differential operator, g(x) is a source func-

tion and N y(x) =
x∫

a
K1(x, t) f1(t, y(t))dt +

b∫
a

K2(x, t) f2(t, y(t))dt is a nonlinear

operator.
The inverse operator of L−1 is defined as

L−1[·] =
x∫

a

x∫

a

[·]dxdx . (1.5)

Operating with L−1[·] on both sides of (1.4) and applying the condition y(a) = α1,
we obtain

y(x) = α1 + (x − a)c + L−1[g(x)] + L−1[N y(x)], (1.6)

where c = y′(a) is unknown parameter to be determined.
Next the solution y(x), the nonlinear terms f1(t, y) and f2(t, y) are decomposed

by the finite series as

y(x) =
∞∑
j=0

y j (x), f1(t, y) =
∞∑
j=0

A j and f2(t, y) =
∞∑
j=0

B j , (1.7)

where A j and B j are Adomian’s polynomials which can be obtained by using the
formula given in [28] as

An = 1

n!
dn

dλn

[
f

(
t,

∞∑
k=0

ykλ
k
)]

λ=0
, n = 0, 1, 2, . . . . (1.8)

Several algorithms have been given to generate the Adomian polynomial rapidly in
[33–37].

Substituting the series (1.7) in (1.6), we get

∞∑
j=0

y j (x) = α1 + (x − a)c + L−1[g(x)] + L−1
[ x∫

a

K1(x, t)

( ∞∑
j=0

A j

)
dt

+
b∫

a

K2(x, t)

( ∞∑
j=0

B j

)
dt

]
. (1.9)
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By comparing both sides of (1.9), the ADM is given as

y0(x, c) = α1 + (x − a)c + L−1[g(x)],

y j (x, c) = L−1
[ x∫

a

K1(x, t)A j−1dt +
b∫

a

K2(x, t)B j−1dt

]
, j = 1, 2 . . . .

⎫⎪⎪⎬
⎪⎪⎭

(1.10)

Wazwaz [38] suggested the modified ADM (MADM) as

y0(x, c) = α1,

y1(x, c) = (x − a)c + L−1[g(x)] + L−1
[ x∫

a

K1(x, t)A0dt +
b∫

a

K2(x, t)B0dt

]
,

y j (x, c) = L−1
[ x∫

a

K1(x, t)A j−1dt +
b∫

a

K2(x, t)B j−1dt

]
, j = 2, 3 . . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.11)

The recursive schemes (1.10) and (1.11) give the complete determination of the solution com-
ponents y j (x, c) of the solution y(x) and the n-terms series solution can be obtained as

φn(x, c) =
n∑

j=0

y j (x, c). (1.12)

Note that the series solutionφn(x, c)depends on the unknown parameter c which can be obtained
approximately by imposing the other boundary condition at x = b. This leads to a sequence
of nonlinear (or transcendental) equations, i.e., φn(b, c) = β1, n = 1, 2, 3, . . .. For example,
consider

y′′(x) = −3

2
− 1

(x + 1)2
+

1∫

0

ey(t)dt,

y(0) = 0, y(1) = ln(2).

⎫⎪⎪⎬
⎪⎪⎭

(1.13)

According to the modified ADM (1.11), we transform (1.13) into the following recursive scheme
as

y0(x, c) = cx,

y j (x, c) = −L−1
[

3
2 + 1

(x+1)2
−

1∫
0

A j−1dt

]
, j = 1, 2 . . .

⎫⎪⎬
⎪⎭ (1.14)

Using the formula (1.8), the Adomian’s polynomials for ey(x) about y0 = cx are given as

A0 = ecx , A1 = y1(x)cecx , A2 = y2(x)cecx + 1

2
y2

1 (x)c
2ecx , . . . (1.15)
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Using (1.14) and (1.15), the solution components are obtained as

y0(x, c) = cx,

y1(x, c) = −x − 3x2

4
− x2

2c
+ ecx2

2c
+ ln(1 + x),

y2(x, c) = − ecx2

c4 − ecx2

4c3 + ecx2

c2 − 7ecx2

8c
+ ecx2 cosh c

c4 + ecx2 cosh c

4c3 − ecx2 cosh c

4c2

+ e−cx2Ei(2c)

2c
− e−cx2Ei(2c)

2c
+ ecx2 ln 16

8c
− 5ecx2 sinh c

4c3 + 3ecx2 sinh c

4c2 ,

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.16)

Consequently, the n-terms series solution can be obtained as φn(x, c) =
n∑

j=0

y j (x, c). Now by

imposing the other boundary condition at x = 1 on φn(x, c), we have a sequence of transcen-
dental equations φn(1, c) = ln 2, n = 1, 2, . . . , as follows

φ1(1, c) ≡ c − 1 − 3

4
− 1

2c
+ ec

2c
+ ln(2) = ln(2),

φ2(1, c) ≡ c − 1 − 3

4
− 1

2c
+ ec

2c
+ ln(2)− ec

c4 − ec

4c3 + ec

c2 − 7ec

8c
+ ec cosh c

c4

+ ec cosh c

4c3 − ec cosh c

4c2 + e−cEi(2c)

2c
− e−cEi(2c)

2c
+ ec ln 16

8c

− 5ec sinh c

4c3 + 3ec sinh c

4c2 = ln(2),

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1.17)

In order to find unknown parameter c from above Eq. (1.17), we need some root finding tech-
niques such as Newton’s method which require additional computational work. However, solv-
ing a sequence of transcendental Eq. (1.17) for c is a difficult task in general. Moreover, in
some cases the unknown parameter c may not be uniquely determined. This may be the main
disadvantage of the ADM or the modified ADM for solving BVPs for IDE.

The purpose of this paper is to introduce a modification of the ADM which combines with
Green’s function technique to overcome the difficulties occurring in the ADM or the MADM
for solving second-order BVPs for IDEs of the form (1.1)–(1.2). The proposed method relies
on constructing Green’s function before establishing the recursive scheme for the solution
components. Unlike the ADM or the MADM, the proposed method avoids solving a sequence
of nonlinear (or transcendental) Eq. (1.17) for the unknown parameter c. We provide the direct
recursive scheme for obtaining the approximate solutions in the form of series with easily
computable components of the boundary value problem (1.1)–(1.2) without linearization and
discretization. Furthermore, we also provide a sufficient condition that guarantees a unique
solution to the second-order BVPs for IDEs. Convergence and error analysis of the proposed
method are also established. Convergence analysis is reliable enough to estimate the maximum
absolute truncated error of the series solution. The reliability and efficiency of the proposed
methods are demonstrated by several numerical examples.
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2 Description of the new technique

In this section we propose an efficient recursive scheme based on a combination of the ADM and
Green’s function (ADMGF) for solving second-order BVPs for IDEs of the form (1.1)–(1.2).
We first consider the following homogeneous boundary value problem as

u′′(x) = 0, u(a) = α1, u(b) = β1. (2.1)

The exact solution of the problem (2.1) is given by

u(x) =
(

bα1 − aβ1

b − a

)
+

(
β1 − α1

b − a

)
x . (2.2)

Now, consider the following second order differential equation with homogeneous boundary
conditions as

y′′(x) = F(x), x ∈ [a, b], (2.3)

y(a) = 0, u(b) = 0,

where F ∈ C[a, b]. Integrating (2.3) twice w.r.t. x from a to x and applying the boundary
conditions y(a) = y(b) = 0, we obtain

y(x) = (a − x)

b − a

b∫

a

(b − ξ)F(ξ)dξ +
x∫

a

(x − ξ)F(ξ)dξ.

Splitting the first integral into two parts from a to x and x to b, we get

y(x) = (a − x)

b − a

x∫

a

(b−ξ)F(ξ)dξ+ (a − x)

b − a

b∫

x

(b−ξ)F(ξ)dξ+
x∫

a

(x−ξ)F(ξ)dξ.

Combining the first and last integrals, we obtain

y(x) =
x∫

a

(
(a − x)(b − ξ)

b − a
+ (x − ξ)

)
F(ξ)dξ + 1

b − a

b∫

x

(a − x)(b − ξ)F(ξ)dξ,

= 1

b − a

x∫

a

(a − ξ)(b − x)F(ξ)dξ + 1

b − a

b∫

x

(a − x)(b − ξ)F(ξ)dξ,

=
b∫

a

G(x, ξ)F(ξ)dξ,
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where the Green’s function G(x, ξ) is given by

G(x, ξ)=

⎧⎪⎨
⎪⎩
(a − x)(b−ξ)

b − a
, a ≤ x ≤ ξ,

(a − ξ)(b − x)

b−a
, ξ ≤ x ≤ b,

(2.4)

and its maximum value is given by

max
a≤x,ξ≤b

|G(x, ξ)| = (b − a)

4
. (2.5)

Using (2.2) and (2.4), we transform boundary value problem for IDEs (1.1)–(1.2) into an
equivalent integral equation as

y(x) =
(

bα1 − aβ1

b − a

)
+

(
β1−α1

b−a

)
x +

b∫

a

G(x, ξ)

[
g(ξ)+

ξ∫

a

K1(ξ, t) f1(t, y(t))dt,

+
b∫

a

K2(ξ, t) f2(t, y(t))dt

]
dξ, (2.6)

Now we apply the ADM to the above Eq. (2.6). Let y(x), f1(t, y) and f2(t, y) be represented
by the series of components and the Adomian polynomials, respectively as

y(x) =
∞∑
j=0

y j (x), f1(t, y) =
∞∑
j=0

A j and f2(t, y) =
∞∑
j=0

B j , (2.7)

where A j and B j are Adomian’s polynomials.
Substituting the series (2.7) into (2.6), we obtain

∞∑
j=0

y j (x) =
(

bα1 − aβ1

b − a

)
+

(
β1 − α1

b − a

)
x +

b∫

a

G(x, ξ)

×
[

g(ξ)+
ξ∫

a

K1(ξ, t)

( ∞∑
j=0

A j

)
dt +

b∫

a

K2(ξ, t)

( ∞∑
j=0

B j

)
dt

]
dξ.(2.8)

Comparing both sides of (2.8), we obtain the ADMGF for (1.1)–(1.2) as

y0(x) =
(

bα1 − aβ1

b − a

)
+

(
β1 − α1

b − a

)
x +

b∫

a

G(x, ξ)g(ξ)dξ,

y j (x) =
b∫

a

G(x, ξ)

[ ξ∫

a

K1(ξ, t)A j−1dt+
b∫

a

K2(ξ, t)B j−1dt

]
dξ, j=1, 2 . . .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.9)
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Further by rearranging the terms of y0(x) and y1(x) in the above recursive scheme, we have
the modified ADMGF for (1.1)-(1.2) as

y0(x) =
(

bα1 − aβ1

b − a

)
,

y1(x) =
(
β1 − α1

b − a

)
x +

b∫

a

G(x, ξ)

[
g(ξ)+

ξ∫

a

K1(ξ, t)A0dt +
b∫

a

K2(ξ, t)B0dt

]
dξ,

y j (x) =
b∫

a

G(x, ξ)

[ ξ∫

a

K1(ξ, t)A j−1dt +
b∫

a

K2(ξ, t)B j−1dt

]
dξ, j = 2, 3, . . . ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)

The recursive schemes (2.9) and (2.10) give the complete determination of the solution com-
ponents y j (x) of the solution y(x), and the n-terms truncated series solution can be obtained
as

ψn(x) =
n∑

j=0

y j (x). (2.11)

Remark 2.1 Unlike the ADM or the MADM, the proposed methods (2.9) and (2.10) avoid
unnecessary evaluation of unknown parameters and provide the direct recursive schemes to
obtain series solution of the problem (1.1)–(1.2).

Remark 2.2 It can be noted that the ADMGF (2.9) gives good approximate solution when the
problem is linear or nonlinear of the form yn, yy′, y′n ... while the modified ADMGF (2.10) is
useful when the nonlinear function is of the form ey, ln y, sin y, cosh y... etc.

3 Convergence analysis

It should be noted that the authors [39,40] have already discussed the convergence of the ADM
for differential and integral equations. In this section we discuss the convergence and error
analysis of the recursive schemes (2.9) and (2.10) for solving (1.1)–(1.2). Let X = C[a, b] be
the Banach space with the norm

‖y‖ = max
a≤x≤b

|y(x)|, y ∈ X. (3.1)

We first rewrite the integral Eq. (2.6) in an operator form as

y = N y, (3.2)

where N : X → X is a nonlinear integral operator given by

N y =
(

bα1 − aβ1

b − a

)
+

(
β1 − α1

b − a

)
x +

b∫

a

G(x, ξ)

[
g(ξ)+

ξ∫

a

K1(ξ, t) f1(t, y(t))dt

+
b∫

a

K2(ξ, t) f2(t, y(t))dt

]
dξ. (3.3)
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In the following theorem we provide the sufficient condition that guarantees a unique solution
to the operator Eq. (3.2).

Theorem 3.1 Let X be a Banach space with the norm defined by (3.1) and let N : X → X be
the nonlinear integral operator defined by (3.3) with the kernels Ki (ξ, t) ∈ C([a, b] × [a, b])
and Mi = max |Ki (ξ, t)|, i = 1, 2. Assume that the nonlinear functions f1(t, y) and f2(t, y)
satisfy the Lipschitz condition (1.3) with the Lipschitz constants L1 and L2, respectably. If

δ := (b−a)3(L1 M1+L2 M2)
4 < 1, then the operator Eq. (3.2) has a unique solution y in X.

Proof For any y, y∗ ∈ X, consider

‖N y − N y∗‖ = max
a≤x≤b

∣∣∣∣
b∫

a

G(x, ξ)

[ ξ∫

a

K1(ξ, t)[ f1(t, y(t))− f1(t, y∗(t))]dt

+
b∫

a

K2(ξ, t)[ f2(t, y(t))− f2(t, y∗(t))]dt

]
dξ

∣∣∣∣.

Now the using Lipschitz conditions of f1 and f2, we obtain

‖N y − N y∗‖ ≤ max
a≤x,ξ≤b

|G(x, ξ)|
( b∫

a

[
max

a≤ξ,t≤b
|K1(ξ, t)|

ξ∫

a

L1|y(t)− y∗(t)|dt

+ max
a≤ξ,t≤b

|K2(ξ, t)|
b∫

a

L2|y(t)− y∗(t)|dt

]
dξ

)
.

Using the estimate (2.5), it follows

‖N y−N y∗‖ ≤ (b−a)

4
max

a≤t≤b
|y(t)− y∗(t)|

( b∫

a

[
L1 M1

ξ∫

a

dt+L2 M2

b∫

a

dt

]
dξ

)

≤ (b − a)

4
‖y − y∗‖[L1 M1(b − a)2 + L2 M2(b − a)2

]

= (b − a)3 (L1 M1 + L2 M2)

4
‖y − y∗‖ = δ‖y − y∗‖. (3.4)

If δ = (b−a)3(L1 M1+L2 M2)
4 < 1 then the mapping N : X → X is contraction. Hence by the

Banach contraction principle, the operator Eq. (3.2) has a unique solution y in X. 
�
In the following theorem we give the convergence of the series solutions ψn obtained from

the ADMGF (2.9) or the modified ADMGF (2.10) to the exact solution y of the operator Eq.
(3.2).

Theorem 3.2 Assume that all the conditions of Theorem 3.1 hold. Let y0, y1, y2, . . . , be the
solution components of the solution y obtained from the ADMGF (2.9) or the modified ADMGF
(2.10), and let ψn = ∑n

j=0 y j be the n-terms series solution defined by (2.11). Then ψn
converges to the exact solution y of the operator Eq. (3.2) whenever δ < 1 and ‖y1‖ < ∞.
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Proof From the ADMGF (2.9) or the modified (2.10) and (2.11), we have

ψn = y0 +
n∑

j=1

y j ,

=
(

bα1 − aβ1

b − a

)
+

(
β1 − α1

b − a

)
x +

b∫

a

G(x, ξ)g(ξ)dξ

+
n∑

j=1

[ b∫

a

G(x, ξ)

[ ξ∫

a

K1(ξ, t)A j−1dt

+
b∫

a

K2(ξ, t)B j−1dt

]
dξ

]

=
(

bα1 − aβ1

b − a

)
+

(
β1 − α1

b − a

)
x +

b∫

a

G(x, ξ)

[
g(ξ)+

ξ∫

a

K1(ξ, t)
n−1∑
j=0

A j dt

+
b∫

a

K2(ξ, t)
n−1∑
j=0

B j dt

]
dξ. (3.5)

Using the relations
n∑

j=0

A j ≤ f1(t, ψn) and
n∑

j=0

B j ≤ f2(t, ψn) in (3.5) as given in ([37] pp.

945), we obtain

ψn ≤
(

bα1 − aβ1

b − a

)
+

(
β1 − α1

b − a

)
x +

b∫

a

G(x, ξ)

[
g(ξ)+

ξ∫

a

K1(ξ, t) f1(t, ψn−1)dt

+
b∫

a

K2(ξ, t) f2(t, ψn−1)dt

]
dξ. (3.6)

Hence for any n ∈ N and following the steps of the theorem 3.1, we get

‖ψn+1 − ψn‖ ≤ δ‖ψn − ψn−1‖.

Thus we have

‖ψn+1 − ψn‖ ≤ δ‖ψn − ψn−1‖ ≤ δ2‖ψn−1 − ψn−2‖ ≤ . . . ≤ δn‖ψ1 − ψ0‖.

For all n,m ∈ N, with n > m, consider

‖ψn − ψm‖ = ‖(ψn − ψn−1)+ (ψn−1 − ψn−2)+ · · · + (ψm+1 − ψm)‖
≤ ‖ψn − ψn−1‖ + ‖ψn−1 − ψn−2‖ + · · · + ‖ψm+1 − ψm‖
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≤ [δn−1 + δn−2 + · · · + δm ]‖ψ1 − ψ0‖
= δm [1 + δ + δ2 + · · · + δn−m−1]‖ψ1 − ψ0‖

= δm
(

1 − δn−m

1 − δ

)
‖y1‖.

Since δ < 1 so, (1 − δn−m) < 1 and ‖y1‖ < ∞, it follows that

‖ψn − ψm‖ ≤ δm

1 − δ
‖y1‖, (3.7)

which converges to zero, i.e., ‖ψn − ψm‖ → 0, as m → ∞. This implies that there exits a ψ

such that lim
n→∞ψn = ψ . Since, we have y =

∞∑
j=0

y j = lim
n→∞ψn , that is, y = ψ which is the

exact solution of (3.2). 
�

In the following theorem we provide the error bound of the series solution (2.11) obtained
through the ADMGF (2.9).

Theorem 3.3 Let y be the exact solution of the operator Eq. (3.2) and let ψm be a sequence of
approximate series solutions (2.11) obtained from the ADMGF (2.9). Then there holds

‖y − ψm‖ ≤ δm

(1 − δ)
C1,

where C1 = (b − a)3

4
max

a≤t≤b
(M1| f1(t, y0)| + M2| f2(t, y0)|).

Proof Since lim
n→∞ψn = y, fixing m and letting n → ∞ in (3.7) with n ≥ m, we obtain

‖y − ψm‖ ≤ δm

1 − δ
‖y1‖. (3.8)

Since y1(x) =
b∫
a

G(x, ξ)

( ξ∫
a

K1(ξ, t)A0dt +
b∫
a

K2(ξ, t)B0dt

)
dξ , A0 = f1(t, y0),

B0 = f2(t, y0), we have

‖y1‖≤ max
a≤x≤b

b∫

a

|G(x, ξ)|
( ξ∫

a

|K1(ξ, t)|| f1(t, y0)|dt+
b∫

a

|K2(ξ, t)|| f2(t, y0)|dt

)
dξ

≤ (b − a)3

4
max

a≤t≤b
(M1| f1(t, y0)| + M2| f2(t, y0)|) . (3.9)

Combining the estimates (3.8) and (3.9), we get desired result of the theorem. 
�
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Similarly, we can obtain the error bound of the series solution (2.11) obtained through the
modified ADMGF (2.10).

Theorem 3.4 Let y be the exact solution of the operator Eq. (3.2) and let ψm be a sequence
of approximate series solutions (2.11) obtained from the modified ADMGF (2.10). Then there
holds

‖y − ψm‖ ≤ δm

(1 − δ)
C2,

where C2 = (β1−α1
b−a

)
b + (b − a)3

4
max

a≤t≤b
(M1| f1(t, y0)| + M2| f2(t, y0)|).

4 Numerical results and discussion

In this section we consider three examples to demonstrate the accuracy and efficiency of the
modified ADMGF (2.10). All symbolic and numerical computations are performed by using
‘Mathematica’ 8.0 software package. Numerical results obtained by the proposed method are
compared with the exact and known results.

Example 4.1 Consider the following nonlinear second-order BVPs for IDE

y′′(x) = g(x)+
x∫

0

e−t y2(t)dt, x ∈ [0, 1],

y(0) = 1, y(1) = e,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

where g(x) = 1 and the exact solution is y(x) = ex .

According to the modified ADMGF (2.10) with α1 = 1, β1 = e, K1(x, t) = e−t , f1(t, y) =
y2(t), K2(x, t) = 0, and f2(t, y) = 0, we transform the problem (4.1) into the following
recursive scheme as

y0(x) = 1,

y1(x) = (e − 1)x +
1∫

0

G(x, ξ)

[
g(ξ)+

ξ∫

0

K1(ξ, t)A0dt

]
dξ,

y j (x) =
1∫

0

G(x, ξ)

[ ξ∫

0

K1(ξ, t)A j−1dt

]
dξ, j = 2, 3, . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

where the Green’s function G(x, ξ) is given by

G(x, ξ) =
{−x(1 − ξ), 0 ≤ x ≤ ξ,

−ξ(1 − x), ξ ≤ x ≤ 1.
(4.3)
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For fast computer generation, we use the Duan’s efficient algorithm [41] for obtaining the
Adomian’s polynomial for f1 = y2 given as

A0 = y2
0 , A1 = 2y0 y1, A2 = y2

1 + 2y0 y2, . . . (4.4)

Using (4.2) and (4.4), we obtain the solution components as

y0(x) = 1,

y1(x) = 1 − e−x + 0.0861613x + x2,

y2(x) = 26.266967+0.2500e−2x−26.516967e−x − 13.918209x − 12.172322e−x x

+ 2.586161x2 − 2e−x x2 + 4.440892 × 10−16x3,

...

In order to show the accuracy and efficiency of the proposed method, we define absolute error
function as

en(x) = |ψn(x)− y(x)|, n = 1, 2, . . .

where y(x) is the exact solution andψn(x) is n-terms series solution obtained from the ADMGF
(2.9) or the modified ADMGF (2.10).

Table 1 shows the comparison between maximum absolute errors |ψn − y| obtained by the
proposed modified ADMGF (2.10) and |φn − y| obtained by the MADM (1.11). It can observed
that the our method (2.10) provides not only better numerical results but also avoids solving
a sequence of transcendental equations for unknown constant. Moreover, we have also plotted
the absolute error functions en(x) for n = 1(1)6 in Figs. 1 and 2. We also plot the exact y(x)
and the approximate solutions ψ1, ψ2 in Fig. 3.

Table 1 Comparison of the numerical results of Example 4.1

Proposed Method MADM

x |ψ2 − y| |ψ4 − y| |ψ6 − y| |φ2 − y| |φ4 − y| |φ6 − y|
0.0 0.0000E−00 0.0000E−00 1.2732E−00 0.0000E−00 0.0000E−00 4.2732E−11

0.1 1.2602E−03 1.2909E−05 2.7033E−07 1.2902E−02 2.2909E−03 3.7033E−04

0.2 2.5246E−03 2.6007E−05 5.3162E−07 2.5646E−02 4.5007E−03 4.3162E−04

0.3 3.7900E−03 3.9497E−05 7.6330E−07 3.7900E−02 2.9497E−03 6.6330E−04

0.4 5.0235E−03 5.3198E−05 9.3734E−07 6.0235E−02 6.7191E−03 9.4734E−04

0.5 6.1392E−03 6.6136E−05 1.0246E−06 7.1392E−02 6.6132E−03 2.0246E−04

0.6 6.9728E−03 7.6176E−05 1.0033E−06 8.9728E−02 8.6173E−03 2.4033E−04

0.7 7.2566E−03 7.9781E−05 8.6709E−07 5.2566E−02 7.9784E−03 9.6729E−04

0.8 6.5922E−03 7.2046E−05 6.3067E−07 5.6922E−02 7.2046E−03 7.3167E−04

0.9 4.4222E−03 4.7215E−05 3.2839E−07 4.5222E−02 6.7214E−03 4.2869E−04

1.0 0.0000E−00 0.0000E−00 0.0000E−00 3.1383E−15 8.6841E−17 6.6067E−14
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Fig. 1 Absolute error functions en(x) for n = 1, 2, 3 of Example 4.1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

1.0x10-5

2.0x10-5

3.0x10-5

4.0x10-5  e
4
(x)

 e
5
(x)

 e
6
(x)

x

e n(x
)

Fig. 2 Absolute error functions en(x) for n = 4, 5, 6 of Example 4.1

Example 4.2 Consider the following nonlinear second-order BVPs for IDE

y′′(x) = g(x)+
x∫

0

(x − t)ey(t)dt, x ∈ I = [0, 1],

y(0) = ln(4), y(1) = ln(5),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.5)

where g(x) = −2x2 − x3

6 − 1
(4+x)2

.
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Fig. 3 Comparison of the exact y(x) and the approximations ψ1, ψ2 of Example 4.1

According to the modified ADMGF (2.10) with α1 = ln(4), β1 = ln(5), K1(x, t) = (x − t),
f1(t, y) = ey(t), K2(x, t) = 0, and f2(t, y) = 0, the problem (4.5) is transformed into the
following recursive scheme as

y0(x) = ln(4),

y1(x) = [ln(5)− ln(4)]x +
1∫

0

G(x, ξ)

[
g(ξ)+

ξ∫

0

K1(ξ, t)A0dt

]
dξ,

y j (x) =
1∫

0

G(x, ξ)

[ ξ∫

0

K1(ξ, t)A j−1dt

]
dξ, j = 2, 3, . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.6)

where the Green’s function G(x, ξ) is given by (4.3).
Similarly, using the Duan’s efficient algorithm [41], the Adomian’s polynomials for f1 = ey

are calculated as

A0 = ey0 , A1 = ey0 y1, A2 = 1

2
ey0 y2

1 + ey0 y2, . . . , (4.7)

Using (4.6) and (4.7), the solution components are computed as

y0(x) = ln(4),

y1(x) = −1.469627x + 0.166666x2 − 0.083333x3 + (x − 1) ln

(
4

4 + x

)

+ x ln(4 + x),
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Table 2 Comparison of the numerical results of Example 4.2

Proposed Method MADM

x |ψ2 − y| |ψ4 − y| |ψ6 − y| |φ2 − y| |φ4 − y| |φ6 − y|
0.0 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00

0.1 6.7283E−04 2.2970E−06 2.7033E−07 5.7282E−02 3.2970E−04 2.9034E−05

0.2 1.0230E−03 2.5066E−06 5.3162E−07 3.0231E−02 3.5066E−04 5.4163E−05

0.3 1.1155E−03 1.2202E−06 7.6330E−07 2.1153E−02 2.2202E−04 7.7331E−05

0.4 1.0153E−03 9.7093E−07 9.3734E−07 2.0151E−02 8.7093E−04 9.4733E−05

0.5 7.8720E−04 3.4754E−06 1.0246E−06 6.8722E−02 5.4754E−04 1.8245E−05

0.6 4.9609E−04 5.7018E−06 1.0033E−06 3.9603E−02 4.7018E−04 1.7034E−05

0.7 2.0690E−04 7.0589E−06 8.6709E−07 4.0692E−02 6.0589E−04 8.6708E−05

0.8 1.5445E−05 6.9552E−06 6.3067E−07 2.5443E−02 5.9552E−04 6.6065E−05

0.9 1.0605E−05 4.7993E−06 3.2839E−07 2.0603E−02 3.7993E−04 3.5838E−05

1.0 0.0000E−00 0.0000E−00 0.0000E−00 3.2203E−16 3.2204E−16 1.1756E−11
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Fig. 4 Absolute error functions en(x) for n = 1, 2, 3 of Example 4.2

y2(x) = 0.0747756x − 0.147291x2 + 0.0725155x3,

...

Similarly, Table 2 shows the comparison of maximum absolute error |ψn − y|, n = 2, 4, 6
obtained by the modified ADMGF (2.10) and |φn − y|, n = 2, 4, 6 obtained by the MADM
(1.11). Once again, it has been shown that the proposed method gives better numerical results
compared to the MADM (1.11). Also note that the modified ADMGF avoids extra calculations
for unknown constants. Furthermore, we plot error functions en(x) for n = 1(1)6 in Figs. 4 and
5. Figure 6 shows the plot of the exact solution y(x) and the approximations ψn, n = 1, 2.
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Fig. 5 Absolute error functions en(x) for n = 4, 5, 6 of Example 4.2
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Fig. 6 Comparison of the exact y(x) and the approximations ψ1, ψ2 of Example 4.2

Example 4.3 Consider the following nonlinear second-order BVPs for IDE [20]

y′′(x) = g(x)+
1∫

0

(x − t)ey(t)dt, x ∈ I = [0, 1],

y(0) = 0, y(1) = ln(2),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.8)

where g(x) = − 3x
2 − 1

(x+1)2
+ 5

6 .
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Table 3 Comparison of the numerical results of Example 4.3

Proposed Method MADM

x |ψ2 − y| |ψ4 − y| |ψ6 − y| |φ2 − y| |φ4 − y| |φ6 − y|
0.0 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00 0.0000E−00

0.1 1.8842E−03 6.3121E−05 1.4764E−07 1.8842E−02 6.3122E−03 1.4764E−05

0.2 3.0280E−03 1.0072E−05 2.2706E−07 2.0280E−02 4.0071E−03 3.2706E−05

0.3 3.5520E−03 1.1712E−05 2.5154E−07 7.5521E−02 2.1714E−03 5.5154E−05

0.4 3.5769E−03 1.1661E−05 2.3435E−07 6.5768E−02 2.1662E−03 5.3435E−05

0.5 3.2232E−03 1.0352E−05 1.8879E−07 5.2231E−02 2.0351E−03 6.8879E−05

0.6 2.6117E−03 8.2142E−05 1.2812E−07 4.6116E−02 7.2141E−03 7.2812E−05

0.7 1.8629E−03 5.6793E−05 6.5627E−07 4.8628E−02 7.6792E−03 9.5627E−05

0.8 1.0976E−03 3.1780E−05 1.4589E−07 4.0975E−02 3.1781E−03 8.4589E−05

0.9 4.3647E−04 1.1413E−05 1.1712E−07 3.3646E−02 2.1413E−03 7.1712E−05

1.0 0.0000E−00 0.0000E−00 0.0000E−00 2.1102E−16 2.1102E−16 3.3306E−16
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Fig. 7 Absolute error functions en(x) for n = 1, 2, 3 of Example 4.3

According to the modified ADMGF (2.10) with α1 = 0, β1 = ln(2), K1(x, t) = 0,
f1(t, y) = 0, f2(t, y) = ey(t) and K2(x, t) = (x − t), we transform the problem (4.8)
into the following recursive scheme as

y0(x) = 0,

y1(x) = (ln(2)− 0)x +
1∫

0

G(x, ξ)

[
g(ξ)+

1∫

0

K2(ξ, t)A0dt

]
dξ,

y j (x) =
1∫

0

G(x, ξ)

[ 1∫

0

K2(ξ, t)A j−1dt

]
dξ, j = 2, 3, . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.9)
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Fig. 8 Absolute error functions en(x) for n = 4, 5, 6 of Example 4.3
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Fig. 9 Comparison of the exact y(x) and the approximations ψ1, ψ3 of Example 4.3

where the Green’s function G(x, ξ) by (4.3) and the Adomian’s polynomials A j are given by
(4.7).

Using (4.9) and (4.7), we obtain the solution components as

y0(x) = 0,

y1(x) = −0.083333x + 0.166666x2 − 0.083333x3 + ln(1 + x),
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y2(x) = 0.0603861x − 0.123611x2 + 0.063225x3,

...

Table 3 shows the comparison of maximum absolute error |ψn − y|, n = 2, 4, 6 obtained
by the modified ADMGF (2.10) and |φn − y|, n = 2, 4, 6 obtained by the MADM (1.11). Like
previous examples, the accuracy of the proposed method is tested by plotting the absolute error
functions en(x) for n = 1(1)6 in Figs. 7 and 8. We have also plotted the exact solution y(x)
and approximations ψ1 and ψ3 in Fig. 9.

5 Conclusion

We have presented a new effective method based on a combination of the Adomian decom-
position method and Green’s function for solving nonlinear second-order IDEs approximately.
It depends on constructing Green’s function before establishing the recursive scheme for the
solution components of the solution. Unlike the ADM or the MADM, the proposed method
(ADMGF or the modified ADMGF) avoids unnecessary evaluation of unknown parameters and
provides much better numerical results. The accuracy and efficiency of the proposed method
has been tested by solving three numerical examples of second-order BVPs for IDEs. Unlike
the finite difference, the cubic spline methods, and any other discretization methods, the pro-
posed method does not require any linearization or discretization of variables. In addition, we
have provided a sufficient condition that guarantees a unique solution to the second-order BVPs
for IDEs. Convergence and error analysis of the proposed method have also been discussed.
Convergence analysis is reliable enough to estimate the error bound of the series solution.
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